

3. Draw a scatter plot with a strong negative correlation.

- Make a scatter plot of the data.
- 6. Consider the scatterplot and then describe the correlation.

Direction:

Strength:

5.

7. Calculate the average point.

 $(\overline{x}, \ \overline{y})$:

8. Draw the line of best fit and write the equation for it.

Wave Height	3	6	5	1	4
Number of Surfers	24	61	56	15	35

- 9. Describe what the numbers in your equation mean in relation to the context of the problem.
- 10. How many surfers do you think there will be if the wave height is 15 feet?
- 11. What conclusion can you make about the relationship between wave height and the number of surfers on a given day?

4. People were asked to record their water intake and the high temperature each day. A random sampling of the data they recorded is listed below. Using the given data and scatter plot. Find each piece of information.

Temp.	Water	Average Point:
°F	oz.	0
99°	48	
85°	27	
97°	48	
75°	16	
92°	32	
85°	25	
83°	20	

50.00									
Ces									
52 0									-
-48-bild							••		-
-44- H									_
40-00									
-36-ğ									
Mai									
01									
-28									
-24									-
-20				•					-
-16						1	Tempera	ture 'F	
42	65 70	0 7	5 8	0 8	5 9	0 9	5 10	0 10	15

Draw the line of best fit.

Equation:

Use the following data to answer #12 - 18.

Weight (thousands of pounds)	2.0	2.4	2.5	2.8	2.9	3.1	3.2	3.5	3.6	3.9
Mileage (miles per gallon)	34	34	28	23	25	23	23	22	24	18

12. Make a scatterplot of the data.

	make a seaterprot of the data.													
														Т
13.	Consider the scatterplot and		-			-			+	-	_			+
	then describe the correlation.					-		F	-	+	-			+
		\vdash	+			+	-		+	+	-		-	+
	Direction:													
		\vdash	-		_	-	_	\square	+	_	_		-	+
	Strength:	\vdash	+	+	_	+-	-	\vdash	+	+	-	\square	-	+
	saengan	\vdash	+			+	-		+	+	+		+	+
		\square	_		_	_			_	_			_	_
14.	Calculate the average point.	\vdash	-		_	-			-	-	_			+
		\vdash	+	+	-	+-	-	\vdash	+	+	-			+
	$(\overline{x}, \overline{y})$:	\vdash	+		-	+		H	+	+	+	\square	+	+
														T
				1				(T						- T

15. Draw the line of best fit (linear regression) through the average point. Then write the equation for it.

- 16. Describe what the numbers in your equation mean in relation to the context of the problem.
- 17. What would you expect the gas mileage to be for a 1700 pound car?
- 18. What conclusion can you make about the relationship between the weight of a car and the gas mileage it will get.